Qt Call Slot From Another Thread

This is rather intuitive and easy to used. But when SLOTS and Qt event loop are used in the worker thread, some users do it wrong. Hughes, one of the Qt core developers, recommend that use worker objects by moving them to the thread using QObject::moveToThread. Unfortunately, some users went on a crusade against the former usage. Two threads with an object assigned to each thread’s event loop. Each event loop handles events by invoking corresponding functions on the object. Notice how another object’s methods can still be called from another thread directly. (calling userFunction) To complete this article, let’s look at running our code on other threads.

how in BOOST send a signal in a thread and have the corresponding slot executed in another thread?

Move the worker to the new thread. Send commands or data to the worker object over queued signal-slot connections. Permanent: Repeatedly perform an expensive operation in another thread, where the thread does not need to receive any signals or events. Write the infinite loop directly within a reimplementation of QThread::run. Start the thread.

boost::signals2
boost::signals2::signal
boost signal handler
boost signal multi-threaded
boost multithreading
Qt call slot from another thread pattern

In Qt for instance if you emit a signal in a thread other that the GUI thread, the signal is enqueued and executed later in the GUI thread, is there a way to do that with boost?

thanks

For an event loop use boost::asio::io_service. You can post tasks inside this object and have another thread execute them, in a thread safe way:

Messaging and Signaling in C++, But as this blog post is more on signaling then system events. Qt signal/slot implementation is thread safe, so that you can use it to send messages important, as anything UI related should run in the main thread of Qt, anything that I use this in a different program to have one widget for editing flag like Almost all classes provided by Boost.Signals2 are thread safe and can be used in multithreaded applications. For example, objects of type boost::signals2::signal and boost::signals2::connection can be accessed from different threads. On the other hand, boost::signals2::shared_connection_block is not thread safe.

Not directly, because boost does not provide an event loop.

To have a signal handled in another thread, that another thread needs to be checking the queue of handlers it should run and execute them (which usually means some kind of event-loop). Boost does not provide one, so you'll need to get it from elsewhere or write it.

If you have an event-loop, that does not provide signals, (or implement some simple solution with queues) you should be able to (ab)use boost.signals2 (not boost.signals, because that version is not thread-safe) by overriding the operator+= to wrap each handler in something, that will queue it for execution in the other thread. You might even be able to implement it for signals with return values (which is not supported by Qt, but is supported by boost), but you'll have to be careful to avoid dead-lock.

[PDF] Boost.Signals2, Signals2 library is an implementation of a managed signals and slots system. This documentation describes a thread-safe variant of the original Boost. so we put 'Hello' into a group that must be executed before the group possible to set up tracking in a post-constructor which is called after the object has been created​ To have a signal handled in another thread, that another thread needs to be checking the queue of handlers it should run and execute them (which usually means some kind of event-loop). Boost does not provide one, so you'll need to get it from elsewhere or write it.

Signals & Slots, Signals and slots are made possible by Qt's meta-object system. to one signal, the slots will be executed one after the other, in the order they have valueChanged() , and it has a slot which other objects can send signals to. The context object provides information about in which thread the receiver should be executed. Special behavior for C++: If a thread is sent a signal using pthread_kill() and that thread does not handle the signal, then destructors for local objects may not be executed. Usage notes. The SIGTHSTOP and SIGTHCONT signals can be issued by this function. pthread_kill() is the only function that can issue SIGTHSTOP or SIGTHCONT. Returned value

Chila's answer is correct, but it's missing one important thing:A boost::thread object will only call the function its passed once. Since the boost::io_service has no work to do until the signal is emitted, the thread will finish immediately. To counter this there is a boost::asio::io_service::work class.Before you call the run() method of the io_service you should create a work object and pass it the io_service:

Note: At the time of writing (boost 1.67) this method is already deprecated and you are supposed to use io_context::executor_work_guard (basically same functionality as io_service::work). I was not able to compile when using the new method though, and the work solution is still working in boost 1.67.

Slots, It also implements a few conditional (event) related classes. Qt - SigSlot - Boost Libraries Qt was the original signal/slots implementation, but it Sigslot and Boost on the other hand are pure ISO C++, but both have some disadvantages. None of these are thread-safe and it can be somewhat inconvenient manually Qt documentation states that signals and slots can be direct, queued and auto. It also stated that if object that owns slot 'lives' in a thread different from object that owns signal, emitting such signal will be like posting message - signal emit will return instantly and slot method will be called in target thread's event loop.

For some reason, the assignment operator of boost::asio::executor_work_guard<boost::asio::io_context::executor_type> is deleted, but you still can construct it.

Here's my version of the code that posts some movable Event object and processes it on the thread running io_context::run():

It requires C++14 and was tested with VS2017 and GCC 6.4 with thread & memory sanitizers.

Observer pattern with Stl, boost and qt, A comparison between the Qt signal and slot mechanism and some Each slot is a potential callback ○ Adds more run-time introspection, The Synapse library ○ Another signals/slot like library ○ Submitted to Very similar to boost::​signals2 ○ Have the ability to transfer control between threads 29; 30. So, when the thread is created from the create_thread method it will call the io_service::run method and it passes the io_service object as an argument. Typically one io_service object can be used with multiple socket objects.

QThreads: Are You Using Them Wrong?, Show related SlideShares at end The Basics of QThread QThread manages one thread of execution ○ The Signal Slot Connections and Threads ○ Qt::​DirectConnection have same thread affinity: Direct ○ If objects have different thread It implies you want to send cross-thread signals to yourself. Direct Connection The slot is invoked immediately, when the signal is emitted. The slot is executed in the emitter's thread, which is not necessarily the receiver's thread. Queued Connection The slot is invoked when control returns to the event loop of the receiver's thread. The slot is executed in the receiver's thread.

What do I do if a slot is not invoked?, A practical checklist to debug your signal/slot connections that an event loop is running in the thread the receiver has affinity with;; that all the arguments Using this signal is very easy – it just acts like a flag, but you can wait for it as well as read it. The following unit test (also in GitHub) shows how the signal makes it easy for threads to set gates on each other. Note that the final signal in this example could have been done with thread.join(), but wasn’t for the purposes of the test.

[Boost-users] Signals2 benchmark, I want to test it against boost::signals2 to get an idea of how well it performs. Suppose one thread disconnects a slot while another fires a signal Each Signal-type has its own corresponding vector of slots defined within the Emitter. the copy being made instead of every slot being called and executed. POSIX requires that signal is thread-safe, and specifies a list of async-signal-safe library functions that may be called from any signal handler. Signal handlers are expected to have C linkage and, in general, only use the features from the common subset of C and C++. It is implementation-defined if a function with C++ linkage can be used as a

Comments
  • THX for this very helpfull sample ! Since boost::signal is deprecated I have to use boost::signals2::signal<>.

Hot Questions

QThread inherits QObject. It emits signals to indicate that the thread started or finished executing, and provides a few slots as well.

More interesting is that QObjects can be used in multiple threads, emit signals that invoke slots in other threads, and post events to objects that 'live' in other threads. This is possible because each thread is allowed to have its own event loop.

Qt Call Slot From Another Thread Holders

QObject Reentrancy

QObject is reentrant. Most of its non-GUI subclasses, such as QTimer, QTcpSocket, QUdpSocket and QProcess, are also reentrant, making it possible to use these classes from multiple threads simultaneously. Note that these classes are designed to be created and used from within a single thread; creating an object in one thread and calling its functions from another thread is not guaranteed to work. There are three constraints to be aware of:

  • The child of a QObject must always be created in the thread where the parent was created. This implies, among other things, that you should never pass the QThread object (this) as the parent of an object created in the thread (since the QThread object itself was created in another thread).
  • Event driven objects may only be used in a single thread. Specifically, this applies to the timer mechanism and the network module. For example, you cannot start a timer or connect a socket in a thread that is not the object's thread.
  • You must ensure that all objects created in a thread are deleted before you delete the QThread. This can be done easily by creating the objects on the stack in your run() implementation.

Although QObject is reentrant, the GUI classes, notably QWidget and all its subclasses, are not reentrant. They can only be used from the main thread. As noted earlier, QCoreApplication::exec() must also be called from that thread.

In practice, the impossibility of using GUI classes in other threads than the main thread can easily be worked around by putting time-consuming operations in a separate worker thread and displaying the results on screen in the main thread when the worker thread is finished. This is the approach used for implementing the Mandelbrot Example and the Blocking Fortune Client Example.

In general, creating QObjects before the QApplication is not supported and can lead to weird crashes on exit, depending on the platform. This means static instances of QObject are also not supported. A properly structured single or multi-threaded application should make the QApplication be the first created, and last destroyed QObject.

Per-Thread Event Loop

Slot

Each thread can have its own event loop. The initial thread starts its event loop using QCoreApplication::exec(), or for single-dialog GUI applications, sometimes QDialog::exec(). Other threads can start an event loop using QThread::exec(). Like QCoreApplication, QThread provides an exit(int) function and a quit() slot.

An event loop in a thread makes it possible for the thread to use certain non-GUI Qt classes that require the presence of an event loop (such as QTimer, QTcpSocket, and QProcess). It also makes it possible to connect signals from any threads to slots of a specific thread. This is explained in more detail in the Signals and Slots Across Threads section below.

A QObject instance is said to live in the thread in which it is created. Events to that object are dispatched by that thread's event loop. The thread in which a QObject lives is available using QObject::thread().

The QObject::moveToThread() function changes the thread affinity for an object and its children (the object cannot be moved if it has a parent).

Calling delete on a QObject from a thread other than the one that owns the object (or accessing the object in other ways) is unsafe, unless you guarantee that the object isn't processing events at that moment. Use QObject::deleteLater() instead, and a DeferredDelete event will be posted, which the event loop of the object's thread will eventually pick up. By default, the thread that owns a QObject is the thread that creates the QObject, but not after QObject::moveToThread() has been called.

If no event loop is running, events won't be delivered to the object. For example, if you create a QTimer object in a thread but never call exec(), the QTimer will never emit its timeout() signal. Calling deleteLater() won't work either. (These restrictions apply to the main thread as well.)

You can manually post events to any object in any thread at any time using the thread-safe function QCoreApplication::postEvent(). The events will automatically be dispatched by the event loop of the thread where the object was created.

Event filters are supported in all threads, with the restriction that the monitoring object must live in the same thread as the monitored object. Similarly, QCoreApplication::sendEvent() (unlike postEvent()) can only be used to dispatch events to objects living in the thread from which the function is called.

Accessing QObject Subclasses from Other Threads

QObject and all of its subclasses are not thread-safe. This includes the entire event delivery system. It is important to keep in mind that the event loop may be delivering events to your QObject subclass while you are accessing the object from another thread.

If you are calling a function on an QObject subclass that doesn't live in the current thread and the object might receive events, you must protect all access to your QObject subclass's internal data with a mutex; otherwise, you may experience crashes or other undesired behavior.

Qt call slot from another thread pattern

Like other objects, QThread objects live in the thread where the object was created -- not in the thread that is created when QThread::run() is called. It is generally unsafe to provide slots in your QThread subclass, unless you protect the member variables with a mutex.

On the other hand, you can safely emit signals from your QThread::run() implementation, because signal emission is thread-safe.

Signals and Slots Across Threads

Qt supports these signal-slot connection types:

Qt Call Slot From Another Thread Size

  • Auto Connection (default) If the signal is emitted in the thread which the receiving object has affinity then the behavior is the same as the Direct Connection. Otherwise, the behavior is the same as the Queued Connection.'
  • Direct Connection The slot is invoked immediately, when the signal is emitted. The slot is executed in the emitter's thread, which is not necessarily the receiver's thread.
  • Queued Connection The slot is invoked when control returns to the event loop of the receiver's thread. The slot is executed in the receiver's thread.
  • Blocking Queued Connection The slot is invoked as for the Queued Connection, except the current thread blocks until the slot returns.

    Note: Using this type to connect objects in the same thread will cause deadlock.

  • Unique Connection The behavior is the same as the Auto Connection, but the connection is made only if it does not duplicate an existing connection. i.e., if the same signal is already connected to the same slot for the same pair of objects, then the connection is not made and connect() returns false.

The connection type can be specified by passing an additional argument to connect(). Be aware that using direct connections when the sender and receiver live in different threads is unsafe if an event loop is running in the receiver's thread, for the same reason that calling any function on an object living in another thread is unsafe.

QObject::connect() itself is thread-safe.

The Mandelbrot Example uses a queued connection to communicate between a worker thread and the main thread. To avoid freezing the main thread's event loop (and, as a consequence, the application's user interface), all the Mandelbrot fractal computation is done in a separate worker thread. The thread emits a signal when it is done rendering the fractal.

Qt Call Slot In Different Thread

Similarly, the Blocking Fortune Client Example uses a separate thread for communicating with a TCP server asynchronously.

Qt Call Slot From Another Thread Pattern

© 2020 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.